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CHAPTER 1

Getting Started

1.1 Try WebPPL

The quickest way to get started using WebPPL is by running programs using the code box on webppl.org. WebPPL
can also be installed locally and run from the command line.

1.2 Learning

If you’re new to probabilistic programming, Probabilistic Models of Cognition is a great place to start learning the
paradigm.

The best guide to using WebPPL is The Design and Implementation of Probabilistic Programming Languages. The
examples will also be helpful in learning the syntax.

1.3 Need help?

If you have any questions about installing WebPPL or need help with your code, you can get help on the Google group.
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CHAPTER 2

Language Overview

The WebPPL language begins with a subset of JavaScript, and adds to it primitive distributions and operations to
perform sampling, conditioning and inference.

2.1 Syntax

Following the notation from the Mozilla Parser API, the language consists of the subset of JavaScript that can be built
from the following syntax elements, each shown with an example:

Element Example
Program A complete program, consisting of a sequence of statements
BlockStatement A sequence of statements surrounded by braces, {var x = 1; var y = 2;}
ExpressionStatement A statement containing a single expression, 3 + 4;
ReturnStatement return 3;
EmptyStatement A solitary semicolon, ;
IfStatement if (x > 1) { return 1; } else { return 2; }
VariableDeclaration var x = 5;
Identifier x
Literal 3
FunctionExpression function (x) { return x; }
CallExpression f(x)
ConditionalExpression x ? y : z
ArrayExpression [1, 2, 3]
MemberExpression Math.log
BinaryExpression 3 + 4
LogicalExpression true || false
UnaryExpression -5
ObjectExpression {a: 1, b: 2}
AssignmentExpression globalStore.a = 1 (Assignment is only supported by the global store.)

3
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Note that general assignment expressions and looping constructs are not currently supported (e.g. for, while,
do). This is because a purely functional language is much easier to transform into Continuation-Passing Style (CPS),
which the WebPPL implementation uses to implement inference algorithms such as enumeration and SMC. While
these restrictions mean that common JavaScript programming patterns aren’t possible, this subset is still universal,
because we allow recursive and higher-order functions. It encourages a functional style, similar to Haskell or LISP,
that is pretty easy to use (once you get used to thinking functionally!).

Here is a (very boring) program that uses much of the available syntax:

var foo = function(x) {
var bar = Math.exp(x);
var baz = x === 0 ? [] : [Math.log(bar), foo(x-1)];
return baz;

}

foo(5);

2.2 Calling JavaScript Functions

JavaScript functions can be called from a WebPPL program, with a few restrictions:

1. JavaScript functions must be deterministic and cannot carry state from one call to another. (That is, the functions
must be ‘referentially transparent’: calling obj.foo(args) must always return the same value when called
with given arguments.)

2. JavaScript functions can’t be called with a WebPPL function as an argument (that is, they can’t be higher-order).

3. JavaScript functions must be invoked as the method of an object (indeed, this is the only use of object method
invocation currently possible in WebPPL).

All of the JavaScript functions built into the environment in which WebPPL is running are automatically available for
use. Additional functions can be added to the environment through the use of packages.

Note that since JavaScript functions must be called as methods on an object, it is not possible to call global JavaScript
functions such as parseInt() directly. Instead, such functions should be called as methods on the built-in object
_top. e.g. _top.parseInt('0').

4 Chapter 2. Language Overview
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CHAPTER 3

Installation

First, install git.

Second, install Node.js. WebPPL is written in JavaScript, and requires Node to run. After it is installed, you can use
npm (node package manager) to install WebPPL:

npm install -g webppl

Create a file called test.wppl:

var greeting = function () {
return flip(.5) ? "Hello" : "Howdy"

}

var audience = function () {
return flip(.5) ? "World" : "Universe"

}

var phrase = greeting() + ", " + audience() + "!"

phrase

Run it with this command:

webppl test.wppl

3.1 Updating

WebPPL is in active development. To update WebPPL, run:

npm update -g webppl

5
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CHAPTER 4

Usage

Running WebPPL programs:

webppl examples/geometric.wppl

4.1 Arguments

Requiring Node.js core modules or WebPPL packages:

webppl model.wppl --require fs
webppl model.wppl --require webppl-viz

Seeding the random number generator:

webppl examples/lda.wppl --random-seed 2344512342

Compiling WebPPL programs to JavaScript:

webppl examples/geometric.wppl --compile --out geometric.js

The compiled file can be run using nodejs:

node geometric.js

4.2 Passing arguments to the program

Command line arguments can be passed through to the WebPPL program by placing them after a single -- argument.
Such arguments are parsed (with minimist) and the result is bound to the global variable argv.

For example, this program:

7
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display(argv);

When run with:

webppl model.wppl -- --my-flag --my-num 100 --my-str hello

Will produce the following output:

{ _: ['model.wppl'], 'my-flag': true, 'my-num': 100, 'my-str': 'hello' }

Once compiled, a program takes its arguments directly, i.e. the -- separator is not required.

8 Chapter 4. Usage



CHAPTER 5

Debugging

WebPPL provides error messages that try to be informative. In addition there is debugging software you can use for
WebPPL programs.

To debug WebPPL programs running in Chrome, enable pause on JavaScript exceptions in the Chrome debugger.

To debug WebPPL programs running in nodejs, use node debugger as follows:

1. Add debugger; statements to my-program.wppl to indicate breakpoints.

2. Run your compiled program in debug mode:

node debug path/to/webppl my-program.wppl

Note that you will need the full path to the webppl executable. This might be in the lib folder of your node
directory if you installed with npm. On many systems you can avoid entering the path manually by using the
following command:

node debug `which webppl` my-program.wppl

3. To navigate to your breakpoint within the debugger interface, type cont or c. At any break point, you can type
repl to interact with the variables. Here’s some documentation for this debugger.

9
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CHAPTER 6

Sample

6.1 Guides

A number of inference strategies make use of an auxiliary distribution which we call a guide distribution. They are
specified like so:

sample(dist, {guide: guideFn});

Where guideFn is a function that takes zero arguments, and returns a distribution object.

For example:

sample(Cauchy(params), {
guide: function() {
return Gaussian(guideParams);

}
});

Note that such functions will only be called when using an inference strategy that makes use of the guide.

In some situations, it is convenient to be able to specify part of a guide computation outside of the functions passed to
sample. This can be accomplished with the guide function, which takes a function of zero arguments representing
the computation:

guide(function() {
// Some guide computation.

});

As with the functions passed to sample, the function passed to guide will only be called when required for infer-
ence.

It’s important to note that guide does not return the value of the computation. Instead, the global store should be
used to pass results to subsequent guide computations. This arrangement encourages a programming style in which
there is separation between the model and the guide.

11
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6.1.1 Default Guide Distributions

Both optimization and forward sampling from the guide require that all random choices in the model have a cor-
responding guide distribution. So, for convenience, these methods automatically use an appropriate default guide
distribution at any random choice in the model for which a guide distribution is not specified explicitly.

Default guide distributions can also be used with SMC. See the documentation for the importance option for details.

The default guide distribution used at a particular random choice:

• Is independent of all other guide distributions in the program.

• Has its type determined by the type of the distribution specified in the model for the random choice.

• Has each of its continuous parameters hooked up to an optimizable parameter. These parameters are not shared
with any other guide distributions in the program.

For example, the default guide distribution for a Bernoulli random choice could be written explicitly as:

var x = sample(Bernoulli({p: 0.5}), {guide: function() {
return Bernoulli({p: Math.sigmoid(param())});

}});

6.2 Drift Kernels

6.2.1 Introduction

The default behavior of MH based inference algorithms is to generate proposals by sampling from the prior. This
strategy is generally applicable, but can be inefficient when the prior places little mass in areas where the posterior
mass in concentrated. In such situations the algorithm may make many proposals before a move is accepted.

An alternative is to sample proposals from a distribution centered on the previous value of the random choice to which
we are proposing. This produces a random walk that allows inference to find and explore areas of high probability in
a more systematic way. This type of proposal distribution is called a drift kernel.

This strategy has the potential to perform better than sampling from the prior. However, the width of the proposal
distribution affects the efficiency of inference, and will often need tuning by hand to obtain good results.

6.2.2 Specifying drift kernels

A drift kernel is represented in a WebPPL program as a function that maps from the previous value taken by a random
choice to a distribution.

For example, to propose from a Gaussian distribution centered on the previous value we can use the following function:

var gaussianKernel = function(prevVal) {
return Gaussian({mu: prevVal, sigma: .1});

};

This function can be used to specify a drift kernel at any sample statement using the driftKernel option like so:

sample(dist, {driftKernel: kernelFn});

To use our gaussianKernel with a Cauchy random choice we would write:

12 Chapter 6. Sample
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sample(Cauchy(params), {driftKernel: gaussianKernel});

6.2.3 Helpers

A number of built-in helpers provide sensible drift kernels for frequently used distributions. These typically take
the same parameters as the distribution from which they sample, plus an extra parameter to control the width of the
proposal distribution.

gaussianDrift({mu: ..., sigma: ..., width: ...})

dirichletDrift({alpha: ..., concentration: ...})

uniformDrift({a: ..., b: ..., width: ...})

A generative process is described in WebPPL by combining samples drawn from distribution objects with deterministic
computation. Samples are drawn using the primitive sample operator like so:

sample(dist);

Where dist is either a primitive distribution or a distribution obtained as the result of marginal inference.

For example, a sample from a standard Gaussian distribution can be generated using:

sample(Gaussian({mu: 0, sigma: 1}));

For convenience, all primitive distributions have a corresponding helper function that draws a sample from that distri-
bution. For example, sampling from the standard Gaussian can be more compactly written as:

gaussian({mu: 0, sigma: 1});

The name of each of these helper functions is obtained by taking the name of the corresponding distribution and
converting the first letter to lower case.

The sample primitive also takes an optional second argument. This is used to specify guide distributions and drift
kernels.

6.2. Drift Kernels 13



webppl Documentation, Release 0.9.13

14 Chapter 6. Sample



CHAPTER 7

Distributions

Distribution objects represent probability distributions, they have two principle uses:

1. Samples can be generated from a distribution by passing a distribution object to the sample operator.

2. The logarithm of the probability (or density) that a distribution assigns to a value can be computed using dist.
score(val). For example:

Bernoulli({p: .1}).score(true); // returns Math.log(.1)

Several primitive distributions are built into the language. Further distributions are created by performing marginal
inference.

7.1 Primitives

Bernoulli({p: ...})

• p: success probability (real [0, 1])

Distribution over {true, false}

Wikipedia entry

Beta({a: ..., b: ...})

• a: shape (real (0, Infinity))

• b: shape (real (0, Infinity))

Distribution over [0, 1]

Wikipedia entry

Binomial({p: ..., n: ...})

• p: success probability (real [0, 1])

• n: number of trials (int (>=1))

15
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Distribution over the number of successes for n independent Bernoulli({p: p}) trials.

Wikipedia entry

Categorical({ps: ..., vs: ...})

• ps: probabilities (can be unnormalized) (vector or real array [0, Infinity))

• vs: support (any array)

Distribution over elements of vs with P(vs[i]) proportional to ps[i]. ps may be omitted, in which case a
uniform distribution over vs is returned.

Wikipedia entry

Cauchy({location: ..., scale: ...})

• location: (real)

• scale: (real (0, Infinity))

Distribution over [-Infinity, Infinity]

Wikipedia entry

Delta({v: ...})

• v: support element (any)

Discrete distribution that assigns probability one to the single element in its support. This is only useful in
special circumstances as sampling from Delta({v: val}) can be replaced with val itself. Furthermore,
a Delta distribution parameterized by a random choice should not be used with MCMC based inference, as
doing so produces incorrect results.

DiagCovGaussian({mu: ..., sigma: ...})

• mu: mean (tensor)

• sigma: standard deviations (tensor (0, Infinity))

A distribution over tensors in which each element is independent and Gaussian distributed, with its own mean
and standard deviation. i.e. A multivariate Gaussian distribution with diagonal covariance matrix. The distri-
bution is over tensors that have the same shape as the parameters mu and sigma, which in turn must have the
same shape as each other.

Dirichlet({alpha: ...})

• alpha: concentration (vector (0, Infinity))

Distribution over probability vectors. If alpha has length d then the distribution is over probability vectors of
length d.

Wikipedia entry

Discrete({ps: ...})

• ps: probabilities (can be unnormalized) (vector or real array [0, Infinity))

Distribution over {0,1,...,ps.length-1} with P(i) proportional to ps[i]

Wikipedia entry

Exponential({a: ...})

• a: rate (real (0, Infinity))

Distribution over [0, Infinity]

Wikipedia entry
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Gamma({shape: ..., scale: ...})

• shape: (real (0, Infinity))

• scale: (real (0, Infinity))

Distribution over positive reals.

Wikipedia entry

Gaussian({mu: ..., sigma: ...})

• mu: mean (real)

• sigma: standard deviation (real (0, Infinity))

Distribution over reals.

Wikipedia entry

KDE({data: ..., width: ...})

• data: data array

• width: kernel width

A distribution based on a kernel density estimate of data. A Gaussian kernel is used, and both real and vector
valued data are supported. When the data are vector valued, width should be a vector specifying the kernel
width for each dimension of the data. When width is omitted, Silverman’s rule of thumb is used to select a
kernel width. This rule assumes the data are approximately Gaussian distributed. When this assumption does
not hold, a width should be specified in order to obtain sensible results.

Wikipedia entry

Laplace({location: ..., scale: ...})

• location: (real)

• scale: (real (0, Infinity))

Distribution over [-Infinity, Infinity]

Wikipedia entry

LogisticNormal({mu: ..., sigma: ...})

• mu: mean (vector)

• sigma: standard deviations (vector (0, Infinity))

A distribution over probability vectors obtained by transforming a random variable drawn from
DiagCovGaussian({mu: mu, sigma: sigma}). If mu and sigma have length d then the dis-
tribution is over probability vectors of length d+1.

Wikipedia entry

LogitNormal({mu: ..., sigma: ..., a: ..., b: ...})

• mu: location (real)

• sigma: scale (real (0, Infinity))

• a: lower bound (real)

• b: upper bound (>a) (real)

A distribution over (a,b) obtained by scaling and shifting a standard logit-normal.

Wikipedia entry

7.1. Primitives 17
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Mixture({dists: ..., ps: ...})

• dists: array of component distributions

• ps: component probabilities (can be unnormalized) (vector or real array [0, Infinity))

A finite mixture of distributions. The component distributions should be either all discrete or all continuous. All
continuous distributions should share a common support.

Multinomial({ps: ..., n: ...})

• ps: probabilities (real array with elements that sum to one)

• n: number of trials (int (>=1))

Distribution over counts for n independent Discrete({ps: ps}) trials.

Wikipedia entry

MultivariateBernoulli({ps: ...})

• ps: probabilities (vector [0, 1])

Distribution over a vector of independent Bernoulli variables. Each element of the vector takes on a value in
{0, 1}. Note that this differs from Bernoulli which has support {true, false}.

MultivariateGaussian({mu: ..., cov: ...})

• mu: mean (vector)

• cov: covariance (positive definite matrix)

Multivariate Gaussian distribution with full covariance matrix. If mu has length d and cov is a d-by-d matrix,
then the distribution is over vectors of length d.

Wikipedia entry

Poisson({mu: ...})

• mu: mean (real (0, Infinity))

Distribution over integers.

Wikipedia entry

RandomInteger({n: ...})

• n: number of possible values (int (>=1))

Uniform distribution over {0,1,...,n-1}

Wikipedia entry

TensorGaussian({mu: ..., sigma: ..., dims: ...})

• mu: mean (real)

• sigma: standard deviation (real (0, Infinity))

• dims: dimension of tensor (int (>=1) array)

Distribution over a tensor of independent Gaussian variables.

TensorLaplace({location: ..., scale: ..., dims: ...})

• location: (real)

• scale: (real (0, Infinity))

• dims: dimension of tensor (int (>=1) array)
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Distribution over a tensor of independent Laplace variables.

Uniform({a: ..., b: ...})

• a: lower bound (real)

• b: upper bound (>a) (real)

Continuous uniform distribution over [a, b]

Wikipedia entry

7.1. Primitives 19
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CHAPTER 8

Inference

Marginal inference (or just inference) is the process of reifying the distribution on return values implicitly represented
by a stochastic computation.

(In general, computing this distribution is intractable, so often the goal is to compute an approximation to it.)

This is achieved in WebPPL using the Infer function, which takes a function of zero arguments representing a
stochastic computation and returns the distribution on return values represented as a distribution object. For example:

Infer(function() {
return flip() + flip();

});

This example has no inference options specified. By default, Infer will perform inference using one of the methods
among enumeration, rejection sampling, SMC and MCMC. The method to use is chosen by a decision tree based
on the characteristics of the given model, such as whether it is enumerable in a timely manner, whether there are
interleaving samples and factors etc. Several other implementations of marginal inference are also built into WebPPL.
Information about the individual methods is available here:

8.1 Methods

8.1.1 Enumeration

Infer({model: ..., method: ’enumerate’[, ...]})
This method performs inference by enumeration.

The following options are supported:

maxExecutions
Maximum number of (complete) executions to enumerate.

Default: Infinity

21
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strategy
The traversal strategy used to explore executions. Either 'likelyFirst', 'depthFirst' or
'breadthFirst'.

Default: 'likelyFirst' if maxExecutions is finite, 'depthFirst' otherwise.

Example usage:

Infer({method: 'enumerate', maxExecutions: 10, model: model});
Infer({method: 'enumerate', strategy: 'breadthFirst', model: model});

8.1.2 Rejection sampling

Infer({model: ..., method: ’rejection’[, ...]})
This method performs inference using rejection sampling.

The following options are supported:

samples
The number of samples to take.

Default: 100

maxScore
An upper bound on the total factor score per-execution.

Default: 0

incremental
Enable incremental mode.

Default: false

Incremental mode improves efficiency by rejecting samples before execution reaches the end of the program
where possible. This requires every call to factor(score) in the program (across all possible executions)
to have score <= 0.

Example usage:

Infer({method: 'rejection', samples: 100, model: model});

8.1.3 MCMC

Infer({model: ..., method: ’MCMC’[, ...]})
This method performs inference using Markov chain Monte Carlo.

The following options are supported:

samples
The number of samples to take.

Default: 100

lag
The number of additional iterations to perform between samples.

Default: 0
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burn
The number of additional iterations to perform before collecting samples.

Default: 0

kernel
The transition kernel to use for inference. See Kernels.

Default: 'MH'

verbose
When true, print the current iteration and acceptance ratio to the console during inference.

Default: false

onlyMAP
When true, only the sample with the highest score is retained. The marginal is a delta distri-
bution on this value.

Default: false

Example usage:

Infer({method: 'MCMC', samples: 1000, lag: 100, burn: 5, model: model});

Kernels

The following kernels are available:

MH
Implements single site Metropolis-Hastings. [wingate11]

This kernel makes use of any drift kernels specified in the model.

Example usage:

Infer({method: 'MCMC', kernel: 'MH', model: model});

HMC
Implements Hamiltonian Monte Carlo. [neal11]

As the HMC algorithm is only applicable to continuous variables, HMC is a cycle kernel which includes a MH
step for discrete variables.

The following options are supported:

steps
The number of steps to take per-iteration.

Default: 5

stepSize
The size of each step.

Default: 0.1

Example usage:

Infer({method: 'MCMC', kernel: 'HMC', model: model});
Infer({method: 'MCMC', kernel: {HMC: {steps: 10, stepSize: 1}}, model: model});
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8.1.4 Incremental MH

Infer({model: ..., method: ’incrementalMH’[, ...]})
This method performs inference using C3. [ritchie15]

This method makes use of any drift kernels specified in the model.

The following options are supported:

samples
The number of samples to take.

Default: 100

lag
The number of additional iterations to perform between samples.

Default: 0

burn
The number of additional iterations to perform before collecting samples.

Default: 0

verbose
When true, print the current iteration to the console during inference.

Default: false

onlyMAP
When true, only the sample with the highest score is retained. The marginal is a delta distri-
bution on this value.

Default: false

Example usage:

Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

To maximize efficiency when inferring marginals over multiple variables, use the query table, rather than
building up a list of variable values:

var model = function() {
var hmm = function(n, obs) {
if (n === 0) return true;
else {

var prev = hmm(n-1, obs);
var state = transition(prev);
observation(state, obs[n]);
query.add(n, state);
return state;

}
};
hmm(100, observed_data);
return query;

}
Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

query is a write-only table which can be returned from a program (and thus marginalized). The only operation
it supports is adding named values:

query.add(name, value)
Arguments
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• name (any) – Name of value to be added to query. Will be converted to string, as
JavaScript object keys are.

• value (any) – Value to be added to query.
Returns undefined

8.1.5 SMC

Infer({model: ..., method: ’SMC’[, ...]})
This method performs inference using sequential Monte Carlo. When rejuvSteps is 0, this method is also
known as a particle filter.

The following options are supported:

particles
The number of particles to simulate.

Default: 100

rejuvSteps
The number of MCMC steps to apply to each particle at each factor statement. With this
addition, this method is often called a particle filter with rejuvenation.

Default: 0

rejuvKernel
The MCMC kernel to use for rejuvenation. See Kernels.

Default: 'MH'

importance
Controls the importance distribution used during inference.

Specifying an importance distribution can be useful when you know something about the poste-
rior distribution, as specifying an importance distribution that is closer to the posterior than the
prior will improve the statistical efficiency of inference.

This option accepts the following values:
• 'default': When a random choice has a guide distribution specified, use that as the

importance distribution. For all other random choices, use the prior.
• 'ignoreGuide': Use the prior as the importance distribution for all random choices.
• 'autoGuide': When a random choice has a guide distribution specified, use that as the

importance distribution. For all other random choices, use a default guide distribution as the
importance distribution.

Default: 'default'

onlyMAP
When true, only the sample with the highest score is retained. The marginal is a delta distri-
bution on this value.

Default: false

Example usage:

Infer({method: 'SMC', particles: 100, rejuvSteps: 5, model: model});

8.1. Methods 25



webppl Documentation, Release 0.9.13

8.1.6 Optimization

Infer({model: ..., method: ’optimize’[, ...]})
This method performs inference by optimizing the parameters of the guide program. The marginal distribution
is a histogram constructed from samples drawn from the guide program using the optimized parameters.

The following options are supported:

samples
The number of samples used to construct the marginal distribution.

Default: 100

onlyMAP
When true, only the sample with the highest score is retained. The marginal is a delta distri-
bution on this value.

Default: false

In addition, all of the options supported by Optimize are also supported here.

Example usage:

Infer({method: 'optimize', samples: 100, steps: 100, model: model});

8.1.7 Forward Sampling

Infer({model: ..., method: ’forward’[, ...]})
This method builds a histogram of return values obtained by repeatedly executing the program given by model,
ignoring any factor statements encountered while doing so. Since condition and observe are written
in terms of factor, they are also effectively ignored.

This means that unlike all other methods described here, forward sampling does not perform marginal inference.
However, sampling from a model without any factors etc. taken into account is often useful in practice, and this
method is provided as a convenient way to achieve that.

The following options are supported:

samples
The number of samples to take.

Default: 100

guide
When true, sample random choices from the guide. A default guide distribution is used for random
choices that do not have a guide distribution specified explicitly.

When false, sample from the model.

Default: false

onlyMAP
When true, only the sample with the highest score is retained. The marginal is a delta distribution on
this value.

Default: false

Example usage:

Infer({method: 'forward', model: model});
Infer({method: 'forward', guide: true, model: model});
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8.2 Conditioning

Conditioning is supported through the use of the condition, observe and factor operators. Only a brief
summary of these methods is given here. For a more detailed introduction, see the Probabilistic Models of Cognition
chapter on conditioning.

Note that because these operators interact with inference, they can only be used during inference. Attempting to use
them outside of inference will produce an error.

condition(bool)
Conditions the marginal distribution on an arbitrary proposition. Here, bool is the value obtained by evaluating
the proposition.

Example usage:

var model = function() {
var a = flip();
var b = flip();
condition(a || b)
return a;

};

observe(distribution, value[, sampleOpts])
Conceptually, this is shorthand for drawing a value from distribution and then conditioning on the value
drawn being equal to value, which could be written as:

var x = sample(distribution);
condition(x === value);
return x;

However, in many cases expressing the condition in this way would be exceedingly inefficient, so observe
uses a more efficient implementation internally.

In particular, it’s essential to use observe to condition on the value drawn from a continuous
distribution.

When value is undefined no conditioning takes place, and observe simply returns a sample from
distribution. In this case, sampleOpts can be used to specify any options that should be used when
sampling. Valid options are exactly those that can be given as the second argument to sample.

Example usage:

var model = function() {
var mu = gaussian(0, 1);
observe(Gaussian({mu: mu, sigma: 1}), 5);
return mu;

};

factor(score)
Adds score to the log probability of the current execution.
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CHAPTER 9

Optimization

Optimization provides an alternative approach to marginal inference.

In this section we refer to the program for which we would like to obtain the marginal distribution as the target
program.

If we take a target program and add a guide distribution to each random choice, then we can define the guide program
as the program you get when you sample from the guide distribution at each sample statement and ignore all factor
statements.

If we endow this guide program with adjustable parameters, then we can optimize those parameters so as to minimize
the distance between the joint distribution of the choices in the guide program and those in the target. For example:

Optimize({
steps: 10000,
model: function() {
var x = sample(Gaussian({ mu: 0, sigma: 1 }), {

guide: function() {
return Gaussian({ mu: param(), sigma: 1 });

}});
factor(-(x-2)*(x-2))
return x;

}});

This general approach includes a number of well-known algorithms as special cases.

It is supported in WebPPL by a method for performing optimization, primitives for specifying parameters, and the
ability to specify guides.

9.1 Optimize

Optimize(options)

Arguments

• options (object) – Optimization options.
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Returns Nothing.

Optimizes the parameters of the guide program specified by the model option.

A default guide distribution is used for random choices that do not have a guide distribution specified explicitly.

The following options are supported:

model
A function of zero arguments that specifies the target and guide programs.

This option must be present.

steps
The number of optimization steps to take.

Default: 1

optMethod
The optimization method used. The following methods are available:

• 'sgd'

• 'adagrad'

• 'rmsprop'

• 'adam'

Each method takes a stepSize sub-option, see below for example usage. Additional method specific
options are available, see the adnn optimization module for details.

Default: 'adam'

estimator
Specifies the optimization objective and the method used to estimate its gradients. See Estimators.

Default: ELBO

weightDecay
Specifies the strength of an L2 penalty applied to all parameters during optimization.

More specifically, a term 0.5 * strength * paramVal^2 is added to the objective for each param-
eter encountered during optimization. Note that this addition is not reflected in the value of the objective
reported during optimization.

For parameters of the model, when the objective is the ELBO, this is equivalent to specifying a mean zero
and variance 1/strength Gaussian prior and a Delta guide for each parameter.

Default: 0

onStep
Specifies a function that will be called after each step. The function will be passed the index of the current
step and the value of the objective as arguments. For example:

var callback = function(index, value) { /* ... */ };
Optimize({model: model, steps: 100, onStep: callback});

If this function returns true, Optimize will return immediately, skipping any remaining optimization
steps.

verbose
Default: false

Example usage:
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Optimize({model: model, steps: 100});
Optimize({model: model, optMethod: 'adagrad'});
Optimize({model: model, optMethod: {sgd: {stepSize: 0.5}}});

9.1.1 Estimators

The following estimators are available:

ELBO
This is the evidence lower bound (ELBO). Optimizing this objective yields variational inference.

For best performance use mapData() in place of map() where possible when optimizing this objective.
The conditional independence information this provides is used to reduce the variance of gradient estimates
which can significantly improve performance, particularly in the presence of discrete random choices. Data
sub-sampling is also supported through the use of mapData().

The following options are supported:

samples
The number of samples to take for each gradient estimate.

Default: 1

avgBaselines
Enable the “average baseline removal” variance reduction strategy.

Default: true

avgBaselineDecay
The decay rate used in the exponential moving average used to estimate baselines.

Default: 0.9

Example usage:

Optimize({model: model, estimator: 'ELBO'});
Optimize({model: model, estimator: {ELBO: {samples: 10}}});

9.2 Parameters

param([options])
Retrieves the value of a parameter by name. The parameter is created if it does not already exist.

The following options are supported:

dims
When dims is given, param returns a tensor of dimension dims. In this case dims should be an array.

When dims is omitted, param returns a scalar.

init
A function that computes the initial value of the parameter. The function is passed the dimension of a
tensor as its only argument, and should return a tensor of that dimension.

When init is omitted, the parameter is initialized with a draw from the Gaussian distribution described
by the mu and sigma options.
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mu
The mean of the Gaussian distribution from which the initial parameter value is drawn when init is
omitted.

Default: 0

sigma
The standard deviation of the Gaussian distribution from which the initial parameter value is drawn when
init is omitted. Specify a standard deviation of 0 to deterministically initialize the parameter to mu.

Default: 0.1

name
The name of the parameter to retrieve. If name is omitted a default name is automatically generated based
on the current stack address, relative to the current coroutine.

Examples:

param()
param({name: 'myparam'})
param({mu: 0, sigma: 0.01, name: 'myparam'})
param({dims: [10, 10]})
param({dims: [2, 1], init: function(dims) { return ones(dims); }})

modelParam([options])
An analog of param used to create or retrieve a parameter that can be used directly in the model.

Optimizing the ELBO yields maximum likelihood estimation for model parameters. modelParam cannot be
used with other inference strategies as it does not have an interpretation in the fully Bayesian setting. Attempting
to do so will raise an exception.

modelParam supports the same options as param. See the documentation for param for details.

9.3 Persistence

The file store provides a simple way to persist parameters across executions. Parameters are read from a file before
the program is executed, and written back to the file once the program finishes. Enable it like so:

webppl model.wppl --param-store file --param-id my-parameters

The file used takes its name from the param-id command line argument (appended with .json) and is expected to
be located in the current directory. A new file will be created if this file does not already exist.

An alternative directory can be specified using the WEBPPL_PARAM_PATH environment variable.

A random file name is generated when the param-id argument is omitted.

Parameters are also periodically written to the file during optimization. The frequency of writes can be controlled
using the WEBPPL_PARAM_INTERVAL environment variable. This specifies the minimum amount of time (in mil-
liseconds) that should elapse between writes. The default is 10 seconds.

Note that this is not intended for parallel use. The mongo store should be used for this instead.
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9.4 Parallelization

9.4.1 Sharing parameters across processes

By default, parameters are stored in-memory and don’t persist across executions.

As an alternative, WebPPL supports sharing parameters between WebPPL processes using MongoDB. This can be
used to persist parameters across runs, speed up optimization by running multiple identical processes in parallel, and
optimize multiple objectives simultaneously.

To use the MongoDB store, select it at startup time as follows:

webppl model.wppl --param-store mongo

Parameters are associated with a parameter set id and sharing only takes place between executions that use the same
id. To control sharing, you can specify a particular id using the param-id command-line argument:

webppl model.wppl --param-store mongo --param-id my-parameter-set

To use the MongoDB store, MongoDB must be running. By default, WebPPL will look for MongoDB at
localhost:27017 and use the collection parameters. This can be changed by adjusting the environment
variables WEBPPL_MONGO_URL and WEBPPL_MONGO_COLLECTION.

9.4.2 Running multiple identical processes in parallel

To simplify launching multiple identical processes with shared parameters, WebPPL provides a parallelRun script
in the scripts folder. For example, to run ten processes that all execute model.wppl with parameter set id
my-parameter-set, run:

scripts/parallelRun model.wppl 10 my-parameter-set

Any extra arguments are passed on to WebPPL, so this works:

scripts/parallelRun model.wppl 10 my-parameter-set --require webppl-json

For a few initial results on the use of parallel parameter updates for LDA, see this presentation.
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CHAPTER 10

Built-in Functions

10.1 Arrays

map(fn, arr)
Returns an array obtained by mapping the function fn over array arr.

map(function(x) { return x + 1; }, [0, 1, 2]); // => [1, 2, 3]

mapData({data: arr[, batchSize: n]}, fn)
Returns an array obtained by mapping the function fn over array arr. Each application of fn has an element
of arr as its first argument and the index of that element as its second argument.

map and mapData differ in that the use of mapData asserts to the inference back end that all executions of fn
are conditionally independent. This information can potentially be exploited on a per algorithm basis to improve
the efficiency of inference.

mapData also provides an interface through which inference algorithms can support data sub-sampling. Where
supported, the size of a “mini-batch” can be specified using the batchSize option. When using data sub-
sampling the array normally returned by mapData is not computed in its entirety, so undefined is returned
in its place.

Only the ELBO optimization objective takes advantage of mapData at this time.

mapData({data: [0, 1, 2]}, function(x) { return x + 1; }); // => [1, 2, 3]
mapData({data: data, batchSize: 10}, fn);

map2(fn, arr1, arr2)
Returns an array obtained by mapping the function fn over arrays arr1 and arr2 concurrently. Each appli-
cation of fn has an element of arr1 as its first argument and the element with the same index in arr2 as its
second argument.

It is assumed that arr1 and arr2 are arrays of the same length. When this is not the case the behavior of
map2 is undefined.
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var concat = function(x, y) { return x + y; };
map2(concat, ['a', 'b'], ['1', '2']); // => ['a1', 'b2']

mapN(fn, n)
Returns an array obtained by mapping the function fn over the integers [0,1,...,n-1].

var inc = function(x) { return x + 1; };
mapN(inc, 3); // => [1, 2, 3]

mapIndexed(fn, arr)
Returns the array obtained by mapping the function fn over array arr. Each application of fn has the index
of the current element as its first argument and the element itself as its second argument.

var pair = function(x, y) { return [x, y]; };
mapIndexed(pair, ['a', 'b']); // => [[0, 'a'], [1, 'b']]

reduce(fn, init, arr)
Reduces array arr to a single value by applying function fn to an accumulator and each value of the array.
init is the initial value of the accumulator.

reduce(function(x, acc) { return x + acc; }, 0, [1, 2, 3]); // => 6

sum(arr)
Computes the sum of the elements of array arr.

It is assumed that each element of arr is a number.

sum([1, 2, 3, 4]) // => 10

product(arr)
Computes the product of the elements of array arr.

It is assumed that each element of arr is a number.

product([1, 2, 3, 4]) // => 24

listMean(arr)
Computes the mean of the elements of array arr.

It is assumed that arr is not empty, and that each element is a number.

listMean([1, 2, 3]); // => 2

listVar(arr[, mean])
Computes the variance of the elements of array arr.

The mean argument is optional. When supplied it is expected to be the mean of arr and is used to avoid
recomputing the mean internally.

It is assumed that arr is not empty, and that each element is a number.

listVar([1, 2, 3]); // => 0.6666...

listStdev(arr[, mean])
Computes the standard deviation of the elements of array arr.

The mean argument is optional. When supplied it is expected to be the mean of arr and is used to avoid
recomputing the mean internally.
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It is assumed that arr is not empty, and that each element is a number.

listStdev([1, 2, 3]); // => 0.8164...

all(predicate, arr)
Returns true when all of the elements of array arr satisfy predicate, and false otherwise.

all(function(x) { return x > 1; }, [1, 2, 3]) // => false

any(predicate, arr)
Returns true when any of the elements of array arr satisfy predicate, and false otherwise.

any(function(x) { return x > 1; }, [1, 2, 3]) // => true

zip(arr1, arr2)
Combines two arrays into an array of pairs. Each pair is represented as an array of length two.

It is assumed that arr1 and arr2 are arrays of the same length. When this is not the case the behavior of zip
is undefined.

zip(['a', 'b'], [1, 2]); // => [['a', 1], ['b', 2]]

filter(predicate, arr)
Returns a new array containing only those elements of array arr that satisfy predicate.

filter(function(x) { return x > 1; }, [0, 1, 2, 3]); // => [2, 3]

find(predicate, arr)
Returns the first element of array arr that satisfies predicate. When no such element exists undefined
is returned.

find(function(x) { return x > 1; }, [0, 1, 2]); // => 2

remove(element, arr)
Returns a new array obtained by filtering out of array arr elements not equal to element.

remove(0, [0, -1, 0, 2, 1]); // => [-1, 2, 1]

groupBy(eqv, arr)
Splits an array into sub-arrays based on pairwise equality checks performed by the function eqv.

var sameLength = function(x, y) { return x.length === y.length; };
groupBy(sameLength, ['a', 'ab', '', 'bc']); // => [['a'], ['ab', 'bc'], ['']]

repeat(n, fn)
Returns an array of length n where each element is the result of applying fn to zero arguments.

repeat(3, function() { return true; }); // => [true, true, true]

sort(arr[, predicate[, fn]])
Returns a sorted array.

Elements are compared using < by default. This is equivalent to passing lt as the predicate argument. To
sort by > pass gt as the predicate argument.

To sort based on comparisons between a function of each element, pass a function as the fn argument.
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sort([3,2,4,1]); // => [1, 2, 3, 4]
sort([3,2,4,1], gt); // => [4, 3, 2, 1]

var length = function(x) { return x.length; };
sort(['a', 'ab', ''], lt, length); // => ['', 'a', 'ab']

sortOn(arr[, fn[, predicate]])
This implements the same function as sort but with the order of the predicate and fn parameters switched.
This is convenient when you wish to specify fn without specifying predicate.

var length = function(x) { return x.length; };
sortOn(['a', 'ab', ''], length); // => ['', 'a', 'ab']

10.2 Tensors

10.2.1 Creation

Vector(arr)

Arguments

• arr (array) – array of values

Creates a tensor with dimension [m, 1], where m is the length of arr.

Example:

Vector([1, 2, 3])

Matrix(arr)

Arguments

• arr (array) – array of arrays of values

Creates a tensor with dimension [m, n], where m is the length of arr and n is the length of arr[0].

Example:

Matrix([[1, 2], [3, 4]])

Tensor(dims, arr)

Arguments

• dims (array) – array of dimension sizes

• arr (array) – array of values

Creates a tensor with dimension dims out of a flat array arr.

Example:

Tensor([2, 2, 2], [1, 2, 3, 4, 5, 6, 7, 8])

zeros(dims)

Arguments

• dims (array) – dimension of tensor
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Creates a tensor with dimension dims and all elements equal to zero.

Example:

zeros([10, 1])

ones(dims)

Arguments

• dims (array) – dimension of tensor

Creates a tensor with dimension dims and all elements equal to one.

Example:

ones([10, 1])

idMatrix(n)
Returns the n by n identity matrix.

oneHot(k, n)
Returns a vector of length n in which the k th entry is one and all other entries are zero.

10.2.2 Operations

WebPPL inherits its Tensor functionality from adnn. It supports all of the tensor functions documented here. Specifi-
cally, the ad.tensor module (and all the functions it contains) are globally available in WebPPL. For convenience,
WebPPL also aliases ad.tensor to T, so you can write things like:

var x = T.transpose(Vector([1, 2, 3])); // instead of ad.tensor.transpose
var y = Vector([3, 4, 5]);
T.dot(x, y); // instead of ad.tensor.dot

10.2.3 Other

dims(tensor)
Returns the shape of tensor.

dims(ones([3, 2])) // => [3, 2]

concat(arr)
Returns the vector obtained by concatenating array of vectors arr.

concat([Vector([1, 2]), Vector([3, 4])]) // => Vector([1, 2, 3, 4])

10.3 Neural networks

In WebPPL neural networks can be represented as simple parameterized functions. The language includes a number
of helper functions that capture common patterns in the shape of these functions. These helpers typically take a name
and the desired input and output dimensions of the network as arguments. For example:

var net = affine('net', {in: 3, out: 5});
var out = net(ones([3, 1])); // dims(out) == [5, 1]
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Larger networks are built with ordinary function composition. The stack() helper provides a convenient way of
composing multiple layers:

var mlp = stack([
sigmoid,
affine('layer2', {in: 5, out: 1}),
tanh,
affine('layer1', {in: 5, out: 5})

]);

It’s important to note that the parameters of these functions are created when the constructor function (e.g. affine())
is called. As a consequence, models should be written such that constructors are called on every evaluation of the
model. If a constructor is instead called only once before Infer or Optimize is called, then the parameters of the
network will not be optimized.

// Correct
var model = function() {
var net = affine('net', opts);
/* use net */

};
Infer({model: model, /* options */});

// Incorrect
var net = affine('net', opts);
var model = function() {
/* use net */

};
Infer({model: model, /* options */});

10.3.1 Feed forward

affine(name, {in, out[, param, init, initb]})
Returns a parameterized function of a single argument that performs an affine transform of its input. This
function maps a vector of length in to a vector of length out.

By default, the weight and bias parameters are created using the param() method. An alternative method (e.g.
modelParam()) can be specified using the param option.

The init option can be used to specify how the weight matrix is initialized. It accepts a function that takes the
shape of the matrix as its argument and returns a matrix of that shape. When the init option is omitted Xavier
initialization is used.

The initb argument specifies the value with which each element of the bias vector is initialized. The default
is 0.

Example usage:

var init = function(dims) {
return idMatrix(dims[0]);

};
var net = affine('net', {in: 10, out: 10, init: init, initb: -1});
var output = net(input);
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10.3.2 Recurrent

These functions return a parameterized function of two arguments that maps a state vector of length hdim and an input
vector of length xdim to a new state vector. Each application of this function computes a single step of a recurrent
network.

rnn(name, {hdim, xdim, [, param, output]})
Implements a vanilla RNN. By default the new state vector is passed through the tanh function before it is
returned. The output option can be used to specify an alternative output function.

gru(name, {hdim, xdim, [, param]})
Implements a gated recurrent unit. This is similar to the variant described in Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.

lstm(name, {hdim, xdim, [, param]})
Implements a long short term memory. This is similar to the variant described in Generating sequences with
recurrent neural networks. The difference is that here there are no peep-hole connections. i.e. The previous
memory state is not passed as input to the forget, input, or output gates.

10.3.3 Nonlinear functions

Some nonlinear functions commonly used when building networks. Each is applied element-wise to its argument.

sigmoid(tensor)

tanh(tensor)

relu(tensor)

softplus(tensor)

softmax(tensor)

10.3.4 Other

stack(fns)
Returns the composition of the array of functions fns. The composite function applies the functions in fns in
reverse order. That is:

stack([g, f]) == function(x) { return g(f(x)); }

10.4 Other

flip([p])
Draws a sample from Bernoulli({p: p}).

p defaults to 0.5 when omitted.

uniformDraw(arr)
Draws a sample from the uniform distribution over elements of array arr.

display(val)
Prints a representation of the value val to the console.
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expectation(dist[, fn])
Computes the expectation of a function fn under the distribution given by dist. The distribution dist must
have finite support.

fn defaults to the identity function when omitted.

expectation(Categorical({ps: [.2, .8], vs: [0, 1]})); // => 0.8

marginalize(dist, project)
Marginalizes out certain variables in a distribution. project can be either a function or a string. Using it as a
function:

var dist = Infer({model: function() {
var a = flip(0.9);
var b = flip();
var c = flip();
return {a: a, b: b, c: c};

}});

marginalize(dist, function(x) {
return x.a;

}) // => Marginal with p(true) = 0.9, p(false) = 0.1

Using it as a string:

marginalize(dist, 'a') // => Marginal with p(true) = 0.9, p(false) = 0.1

forward(model)
Evaluates function of zero arguments model, ignoring any conditioning.

Also see: Forward Sampling

forwardGuide(model)
Evaluates function of zero arguments model, ignoring any conditioning, and sampling from the guide at each
random choice.

Also see: Forward Sampling

mapObject(fn, obj)
Returns the object obtained by mapping the function fn over the values of the object obj. Each application of
fn has a property name as its first argument and the corresponding value as its second argument.

var pair = function(x, y) { return [x, y]; };
mapObject(pair, {a: 1, b: 2}); // => {a: ['a', 1], b: ['b', 2]}

extend(obj1, obj2, ...)
Creates a new object and assigns own enumerable string-keyed properties of source objects 1, 2, . . . to it. Source
objects are applied from left to right. Subsequent sources overwrite property assignments of previous sources.

var x = { a: 1, b: 2 };
var y = { b: 3, c: 4 };
extend(x, y); // => { a: 1, b: 3, c: 4 }

cache(fn, maxSize)
Returns a memoized version of fn. The memoized function is backed by a cache that is shared across all
executions/possible worlds.

cache is provided as a means of avoiding the repeated computation of a deterministic function. The use of
cache with a stochastic function is unlikely to be appropriate. For stochastic memoization see mem().
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When maxSize is specified the memoized function is backed by a LRU cache of size maxSize. The cache
has unbounded size when maxSize is omitted.

cache can be used to memoize mutually recursive functions, though for technical reasons it must currently be
called as dp.cache for this to work.

cache does not support caching functions of scalar/tensor arguments when performing inference with gradient
based algorithms. (e.g. HMC, ELBO.) Attempting to do so will produce an error.

mem(fn)
Returns a memoized version of fn. The memoized function is backed by a cache that is local to the current
execution.

Internally, the memoized function compares its arguments by first serializing them with JSON.stringify.
This means that memoizing a higher-order function will not work as expected, as all functions serialize to the
same string.

error(msg)
Halts execution of the program and prints msg to the console.

kde(marginal[, kernelWidth])
Constructs a KDE() distribution from a sample based marginal distribution.

AIS(model[, options])
Returns an estimate of the log of the normalization constant of model. This is not an unbiased estimator, rather
it is a stochastic lower bound. [grosse16]

The sequence of intermediate distributions used by AIS is obtained by scaling the contribution to the overall
score made by the factor statements in model.

When a model includes hard factors (e.g. factor(-Infinity), condition(bool)) this approach does
not produce an estimate of the expected quantity. Hence, to avoid confusion, an error is generated by AIS if a
hard factor is encountered in the model.

The length of the sequence of distributions is given by the steps option. At step k the score given by each
factor is scaled by k / steps.

The MCMC transition operator used is based on the MH kernel.

The following options are supported:

steps
The length of the sequence of intermediate distributions.

Default: 20

samples
The number of times the AIS procedure is repeated. AIS returns the average of the log of the estimates
produced by the individual runs.

Default: 1

Example usage:

AIS(model, {samples: 100, steps: 100})

Bibliography
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CHAPTER 11

The Global Store

11.1 Background

The subset of JavaScript supported by WebPPL does not include general assignment expressions. This means it is not
possible to change the value bound to a variable, or to modify the contents of a compound data structure:

var a = 0;
a = 1; // won't work

var b = {x: 0};
b.x = 1; // won't work

Attempting to do either of these things (which we will collectively refer to as ‘assignment’) generates an error.

This restriction isn’t usually a problem as most of the things you might like to write using assignment can be expressed
conveniently in a functional style.

However, assignment can occasionally be useful, and for this reason WebPPL provides a limited form of it through
something called the global store.

11.2 Introducing the global store

The global store is a built-in data structure with special status in the language. It is available in all programs as
globalStore.

Unlike regular compound data structures in WebPPL its contents can be modified. Here’s a simple example:

globalStore.x = 0; // assign
globalStore.x = 1; // reassign
globalStore.x += 1;
display(globalStore.x) // prints 2
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When reading and writing to the global store, it behaves like a plain JavaScript object. As in JavaScript, the value of
each property is initially undefined.

Note that while the store can be modified by assigning and reassigning values to its properties, it is not possible to
mutate compound data structures referenced by those properties:

globalStore.foo = {x: 0}
globalStore.foo = {x: 1} // reassigning foo is ok

globalStore.foo = {x: 0}
globalStore.foo.x = 1 // attempting to mutate foo fails

11.3 Marginal inference and the global store

Crucially, all marginal inference algorithms are aware of the global store and take care to ensure that performing
inference over code that performs assignment produces correct results.

To see why this is important consider the following program:

var model = function() {
var x = uniformDraw([0, 1]);
return x;

};

The marginal distribution on return values for this program is:

Infer({method: 'enumerate'}, model);

// Marginal:
// 0 : 0.5
// 1 : 0.5

Now imagine re-writing this model using assignment:

var model = function() {
globalStore.x = 0;
globalStore.x += uniformDraw([0, 1]);
return globalStore.x;

};

Intuitively, these programs should have the same marginal distribution, and in fact they do in WebPPL. However, the
way this works is a little subtle.

To see why, let’s see how inference in our simple model proceeds, keeping track of the value in the global store as we
go.

For this example we will perform marginal inference by enumeration but something similar applies to all inference
strategies.

Marginal inference by enumeration works by exploring all execution paths through the program. If the global store
was shared across paths then the above example would produce counter-intuitive results.

In our example, the first path taken through the program chooses 1 from the uniformDraw which looks something
like:
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globalStore.x = 0; // {x: 0} <- state of the global store
globalStore.x += uniformDraw([0, 1]); // {x: 1} choose 1, update store
return globalStore.x; // Add 1 to the marginal distribution.

Next, we continue from the uniformDraw this time choosing 0:

// // {x: 1} carried over from previous execution
globalStore.x += uniformDraw([0, 1]) // {x: 1} choose 0, updating store produces no
→˓change
return globalStore.x; // Add 1 to the marginal distribution

All paths have now been explored, but our marginal distribution only includes 1!

The solution is have the global store be local to each execution, so that assignment on one path is not visible from
another. This is what happens in WebPPL.

Another way to think about this is to view each execution path as a possible world in a simulation. From this point of
view the global store is world local; it’s not possible to reach into other worlds and modify their state.

11.4 When to use the store

If you find yourself threading an argument through every function call in your program, you might consider replacing
this with a value in the global store.

11.5 When not to use the global store

Maintaining a store local to each execution as described above incurs overhead.

For this reason, it is best not to use the store as a general replacement for assignment as typically used in imperative
programming languages. Instead, it is usually preferable to express the program in a functional style.

Consider for example the case of concatenating an array of strings. Rather than accumulating the result in the global
store:

var f = function() {
var names = ['alice', 'bob'];
globalStore.out = '';
map(function(name) { globalStore.out += name; }, names);
return globalStore.out;

};

It is much better to use reduce to achieve the same result:

var f = function() {
var names = ['alice', 'bob'];
return reduce(function(acc, name) { return acc + name; }, '', names);

};
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CHAPTER 12

Packages

WebPPL packages are regular Node.js packages optionally extended to include WebPPL code and headers.

To make a package available in your program use the --require argument:

webppl myFile.wppl --require myPackage

WebPPL will search the following locations for packages:

1. The node_modules directory within the directory in which your program is stored.

2. The .webppl/node_modules directory within your home directory. Packages can be installed into this
directory with npm install --prefix ~/.webppl myPackage.

Packages can be loaded from other locations by passing a path:

webppl myFile.wppl --require ../myPackage

Packages can extend WebPPL in several ways:

12.1 WebPPL code

You can automatically prepend WebPPL files to your code by added a wppl entry to package.json. For example:

{
"name": "my-package",
"webppl": {
"wppl": ["myLibrary.wppl"]

}
}

The use of some inference algorithms causes a caching transform to be applied to each wppl file. It is possible to skip
the application of this transform on a per-file basis by placing the no caching directive at the beginning of the file.
For example:
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'no caching';

// Rest of WebPPL program

This is expected to be useful in only a limited number of cases and shouldn’t be applied routinely.

12.2 JavaScript functions and libraries

Any regular JavaScript code within a package is made available in WebPPL as a global variable. The global variable
takes the same name as the package except when the package name includes one or more - characters. In such cases
the name of the global variable is obtained by converting the package name to camelCase.

For example, if the package my-package contains this file:

// index.js
module.exports = {

myAdd: function(x, y) { return x + y; }
};

Then the function myAdd will be available in WebPPL as myPackage.myAdd.

If your JavaScript isn’t in an index.js file in the root of the package, you should indicate the entry point to your
package by adding a main entry to package.json. For example:

{
"name": "my-package",
"main": "src/main.js"

}

Note that packages must export functions as properties of an object. Exporting functions directly will not work as
expected.

12.3 Additional header files

Sometimes, it is useful to define external functions that are able to access WebPPL internals. Header files have access
to the following:

• The store, continuation, and address arguments that are present at any point in a WebPPL program.

• The env container which allows access to env.coroutine among other things.

Let’s use the example of a function that makes the current address available in WebPPL:

1. Write a JavaScript file that exports a function. The function will be called with the env container and should
return an object containing the functions you want to use:

// addressHeader.js

module.exports = function(env) {

function myGetAddress(store, k, address) {
return k(store, address);

};

(continues on next page)
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(continued from previous page)

return { myGetAddress: myGetAddress };

};

2. Add a headers entry to package.json:

{
"name": "my-package",
"webppl": {
"headers": ["addressHeader.js"]

}
}

3. Write a WebPPL file that uses your new functions (without module qualifier):

// addressTest.wppl

var foo = function() {
var bar = function() {
console.log(myGetAddress());

}
bar();

};

foo();

12.4 Package template

The WebPPL package template provides a scaffold that you can extend to create your own packages.

12.5 Useful packages

• json: read/write json files

• csv: read/write csv files

• fs: read/write files in general

• dp: dynamic programming (caching for mutually recursive functions)

• editor: browser based editor

• viz: visualization utilities

• bda: data analysis utilities

• agents: agent simulations

• timeit: timing utilities

• intercache: interpolating cache

• oed: optimal experimental design

These packages are no longer maintained, but may be worth a look:

• caches: cache inference results to disk
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• formal: static analysis in Racket for WebPPL

• isosmc: utils for defining sequences of distributions for smc
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CHAPTER 13

Workflow

13.1 Installation from GitHub

git clone https://github.com/probmods/webppl.git
cd webppl
npm --version # ensure >= 4.0.0 (required to run build scripts)
npm install
npm install -g nodeunit grunt-cli

To use the webppl command line tool from any directory, add the webppl directory to your $PATH.

13.2 Updating the npm package

1. Get latest dev version:

git checkout dev
git pull

2. Merge into master and test:

git checkout master
git pull
git merge dev
grunt

3. Update version number on master:

npm version patch # or minor, or major; prints new version number

4. Merge updated version number into dev:
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git checkout dev
git merge master

4. Push to remotes and npm:

git push origin dev
git push origin master
git push origin v0.0.1 # use version printed by "npm version" command above
npm --version # ensure >= 4.0.0 (required to run build scripts)
npm publish --unsafe-perm # flag prevents scripts failing when npm is run as root

13.3 Committing changes

Before committing changes, run grunt (which runs tests and linting):

grunt

If grunt doesn’t succeed, the continuous integration tests will fail as well.

13.4 Modifying .ad.js files

Files with names which end with .ad.js are transformed to use AD primitives when WebPPL is installed.

During development it is necessary to run this transform after any such files have been modified. A grunt task is
provided that will monitor the file system and run the transform when any .ad.js files are updated. Start the task
with:

grunt build-watch

Alternatively, the transform can be run directly with:

grunt build

The scope of the transform is controlled with the 'use ad' directive. If this directive appears directly after the
'use strict' directive at the top of a file, then the whole file will be transformed. Otherwise, those functions
which include the directive before any other statements or expressions in their body will be transformed. Any function
nested within a function which includes the directive will also be transformed.

13.5 Tests

To only run the tests, do:

npm test

To reproduce intermittent test failures run the inference tests with the random seed displayed in the test output. For
example:

RANDOM_SEED=2344512342 nodeunit tests/test-inference.js

nodeunit can also run individual tests or test groups. For example:
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nodeunit tests/test-inference.js -t Enumerate

See the nodeunit documentation for details.

13.6 Linting

To only run the linter:

grunt lint

For more semantic linting, try:

grunt hint

If the linter complains about style errors (like indentation), you can fix many of them automatically using:

grunt lint --fix --force

13.7 Browser version

To generate a version of WebPPL for in-browser use, run:

npm install -g browserify uglify-js
grunt bundle

The output is written to bundle/webppl.js and a minified version is written to bundle/webppl.min.js.

To use in web pages:

<script src="webppl.js"></script>
<script>webppl.run(...)</script>

We also provide an in-browser editor for WebPPL code.

13.7.1 Testing

To check that compilation was successful, run the browser tests using:

grunt test-browser

The tests will run in the default browser. Specify a different browser using the BROWSER environment variable. For
example:

BROWSER="Google Chrome" grunt test-browser

13.7.2 Incremental compilation

Repeatedly making changes to the code and then testing the changes in the browser can be a slow process. watchify
speeds up this process by performing an incremental compile whenever it detects changes to source files. To start
watchify use:
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npm install -g watchify
grunt browserify-watch

Note that this task only updates bundle/webppl.js. Before running the browser tests and deploying, create the
minified version like so:

grunt uglify

13.7.3 Packages

Packages can also be used in the browser. For example, to include the webppl-viz package use:

grunt bundle:path/to/webppl-viz

Multiple packages can specified, separated by colons.
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